Serial Example for Velocity Mode Using Command Profiler

Velocity Mode Examples Using Command Profiler

This document is intended for use with AN-006, which provides examples on how to send a velocity command to an Advanced Motion Controls serial servo drive.

Make sure the drive is configured for velocity mode with the Command Source set to Interface Input 1 and the Command Limiter activated to allow for the acceleration and deceleration to be adjusted.

Command Profiler Objects for Acceleration/Deceleration Limits in Velocity Mode

The following objects are used to set acceleration and deceleration limits when operating in velocity mode. These parameters are often set to the same value so that the acceleration and deceleration are limited equally for both directions of motor rotation.

3C.00h
Linear Ramp Positive Target Positive Change
This parameter limits the acceleration for a velocity commanded in the positive direction.

3C.03h
Linear Ramp Positive Target Negative Change
This parameter limits the deceleration for a velocity commanded in the positive direction.

3C.06h
Linear Ramp Negative Target Negative Change
This parameter limits the acceleration for a velocity commanded in the negative direction.

3C.09h
Linear Ramp Negative Target Positive Change
This parameter limits the deceleration for a velocity commanded in the negative direction.

Drive Units
To convert from acceleration units to drive units, start with an acceleration in counts/sec², based upon feedback resolution, then multiply by the scaling factor below. To convert from drive units to counts/sec², divide by the scaling factor.

<table>
<thead>
<tr>
<th>Drive Unit Type</th>
<th>Physical Units</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>counts/s²</td>
<td>(DA2 = \frac{2^{34}}{KSK_s^2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_i)</td>
<td>Feedback interpolation value. Only applies to drives that support 1 Vpp Sin/Cos feedback. For all other drives, (K_i = 1).</td>
</tr>
<tr>
<td>(K_s)</td>
<td>Switching frequency of the drive in Hz. This is found on the drive datasheet.</td>
</tr>
</tbody>
</table>

Example 1 – Write an acceleration limit of 100 RPM/s to 3C.00h given a motor with a 2000 line encoder using a drive with a 20KHz switching freq.

Convert 100 RPM/s to counts/sec², then multiply by the scaling factor.

\[
100 \text{rev/min} \times \frac{8000 \text{counts}}{\text{rev}} \times \frac{1 \text{min}}{60 \text{sec}} = 13333.33 \frac{\text{cnts}}{\text{sec}^2}
\]

\[
13333.33 \frac{\text{cnts}}{\text{sec}^2} \times \frac{2^{34}}{20000} = 572662
\]

Round to the nearest whole number and convert to hex.

572662 = 8BCF6h

Note: Make sure you have write access to the drive. If not, write an Fh to object 07.00h.
Serial Example for Velocity Mode Using Command Profiler

Set the linear ramp, positive target, positive change limit to 100 RPM/S by writing 8BCF6h to object 3C.00h.

Send

<table>
<thead>
<tr>
<th>SF</th>
<th>DA</th>
<th>CB</th>
<th>Ind.Off</th>
<th>L</th>
<th>CRC</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>3F</td>
<td>02</td>
<td>3C</td>
<td>03</td>
<td>A6</td>
<td>F1</td>
</tr>
</tbody>
</table>

CRC

3C 8B

Reply

<table>
<thead>
<tr>
<th>SF</th>
<th>DA</th>
<th>CB</th>
<th>S1</th>
<th>S2</th>
<th>L</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>FF</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>CF</td>
</tr>
</tbody>
</table>

Example 2 – Verify velocity has been reached by reading bit 1 of object 02.04h

Start by commanding velocity as shown in Application Note #6. Then, read object 02.04h as shown below.

Send

<table>
<thead>
<tr>
<th>SF</th>
<th>DA</th>
<th>CB</th>
<th>S1</th>
<th>S2</th>
<th>L</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>FF</td>
<td>01</td>
<td>02</td>
<td>04</td>
<td>01</td>
<td>0F</td>
</tr>
</tbody>
</table>

Reply

<table>
<thead>
<tr>
<th>SF</th>
<th>DA</th>
<th>CB</th>
<th>Ind.Off</th>
<th>L</th>
<th>CRC</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>FF</td>
<td>02</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>32</td>
<td>FF</td>
</tr>
</tbody>
</table>

Convert the data read from object 2.04h to binary.

0002h = 0000000000000010

Bit 1 is high, therefore the At Command event is active, indicating that the measured velocity is within the At Velocity Window of the target velocity that was commanded.

Drive Status – At Command

To verify that the velocity has been reached, read bit 1 of object 02.04h, which is the Drive System Status 2. This object has a length of 1 word (2 bytes). When bit 1 is high, this indicates that the measured velocity is within the “At Velocity Window” of the Velocity Target. The At Velocity Window is the desired tolerance on the measured velocity and can be set within DriveWare (Limits & Options panel) or over a serial network using object 37.04h.