DigiFlex® Performance™ DPP Drives
POWERLINK / Modbus TCP / Ethernet Communication

Hardware Installation Manual
ADVANCED Motion Controls constantly strives to improve all of its products. We review the information in this document regularly and we welcome any suggestions for improvement. We reserve the right to modify equipment and documentation without prior notice.

For the most recent software, the latest revisions of this manual, and copies of compliance and declarations of conformity, visit the company’s website at www.a-m-c.com. Otherwise, contact the company directly at:

ADVANCED Motion Controls • 3805 Calle Tecate Camarillo, CA • 93012-5068 USA

Agency Compliances

The company holds original documents for the following:

- UL 508c, file number E140173
- Electromagnetic Compatibility, EMC Directive - 2014/30/EU
 EN61000-6-2:2005
 EN61000-6-4:2007/A1:2011
- Electrical Safety, Low Voltage Directive - 2014/35/EU
 EN 60204-1:2006/A1:2009
- Reduction of Hazardous Substances (RoHS III), 2015/863/EU
- Functional Safety Type Approved, TUV Rheinland

Trademarks

ADVANCED Motion Controls®, the combined isosceles trapezoid/right triangle logo, DIGIFLEX®, DIGIFLEX® Performance™ and DriveWare® are either registered trademarks or trademarks of ADVANCED Motion Controls in the United States and/or other countries. All other trademarks are the property of their respective owners.

Related Documentation

- Product datasheet specific for your drive, available for download at www.a-m-c.com
- DriveWare Software Guide, available for download at www.a-m-c.com
- POWERLINK Communication Manual, available for download at www.a-m-c.com
- Ethernet Communication Manual, available for download at www.a-m-c.com
Attention Symbols

The following symbols are used throughout this document to draw attention to important operating information, special instructions, and cautionary warnings. The section below outlines the overall directive of each symbol and what type of information the accompanying text is relaying.

- **Note** - Pertinent information that clarifies a process, operation, or ease-of-use preparations regarding the product.

- **Notice** - Required instruction necessary to ensure successful completion of a task or procedure.

- **Caution** - Instructs and directs you to avoid damaging equipment.

- **Warning** - Instructs and directs you to avoid harming yourself.

- **Danger** - Presents information you must heed to avoid serious injury or death.

Revision History

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Revision #</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNDGPIN-01</td>
<td>1</td>
<td>3/2015</td>
<td>DPP Install Manual First Release</td>
</tr>
<tr>
<td>MNDGPIN-02</td>
<td>2</td>
<td>10/2015</td>
<td>Added Ethernet POWERLINK as a supported network communication type</td>
</tr>
<tr>
<td>MNDGPIN-03</td>
<td>3</td>
<td>3/2016</td>
<td>Added -060A400 power module information</td>
</tr>
<tr>
<td>MNDGPIN-04</td>
<td>4</td>
<td>4/2017</td>
<td>Added -030A800 and -060A800 power module information</td>
</tr>
<tr>
<td>MNDGPIN-05</td>
<td>5</td>
<td>11/2017</td>
<td>Added -100B180 power module information</td>
</tr>
<tr>
<td>MNDGPIN-06</td>
<td>6</td>
<td>5/2018</td>
<td>- Added 2-Phase Stepper motor information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Added PDO power-up delay information</td>
</tr>
</tbody>
</table>

© 2018 ADVANCED Motion Controls. All rights reserved.
Contents

1 Safety

1.1 General Safety Overview .. 1

2 Products and System Requirements 4

2.1 DPP Drive Family Overview 4
 2.1.1 Drive Datasheet ... 4
2.2 Products Covered .. 5
 2.2.1 Control Module ... 7
2.3 Communication Protocol .. 8
2.4 Control Modes ... 9
 2.4.1 Profile Modes ... 9
 Profile Current (Torque) 9
 Profile Velocity ... 9
 Profile Position .. 9
 2.4.2 Cyclic Synchronous Modes 9
 Cyclic Synchronous Current 10
 Cyclic Synchronous Velocity 10
 Cyclic Synchronous Position 10
 2.4.3 Current (Torque) ... 10
 2.4.4 Velocity ... 10
 2.4.5 Position ... 10
2.5 Feedback Supported ... 11
 Feedback Polarity ... 11
 2.5.1 Incremental Encoder 11
 2.5.2 Absolute Encoder ... 12
 2.5.3 1Vp-p Sin/Cos Encoder 13
2.5.4 Hall Sensors .. 13
2.5.5 Auxiliary Incremental Encoder 13
2.5.6 Tachometer (±10 VDC) 13
2.5.7 ±10 VDC Position ... 13
2.6 Command Sources ... 14
 2.6.1 ±10V Analog .. 14
 2.6.2 Encoder Following ... 14
 2.6.3 Indexing and Sequencing 14
 2.6.4 Jogging .. 14
 2.6.5 Over the Network .. 14
2.7 System Requirements .. 15
 2.7.1 Specifications Check 15
 2.7.2 Motor Specifications 15
 2.7.3 Power Supply Specifications 16
 2.7.4 Environment .. 17
 Shock/Vibrations ... 17
 Ambient Temperature Range and Thermal Data 17

3 Integration in the Servo System 19

 3.1 LVD Requirements .. 19
 3.2 CE-EMC Wiring Requirements 20
 General .. 20
 Analog Input Drives .. 20
 PWM Input Drives .. 20
 MOSFET Switching Drives 20
 IGBT Switching Drives 20
 Fitting of AC Power Filters 20
 3.2.1 Ferrite Suppression Core Set-up 21
 3.2.2 Inductive Filter Cards 21
 3.3 Grounding ... 22
 3.4 Wiring ... 23
 3.4.1 Wire Gauge ... 23
 3.4.2 Motor Wires .. 24
 3.4.3 Power Supply Wires 24
 3.4.4 Feedback Wires .. 24
 3.4.5 I/O and Signal Wires 25
 3.5 Connector Types ... 26
 3.5.1 Power Connectors 26
3.5.2 Feedback Connectors .. 28
3.5.3 I/O Connectors ... 29
3.5.4 Communication Connectors 29
3.5.5 STO Connector .. 30
3.6 Mounting .. 30

4 Operation and Features .. 31

4.1 Features and Getting Started 31
 4.1.1 Initial Setup and Configuration 31
 4.1.2 Input/Output Pin Functions 33
 Programmable Digital I/O 33
 Programmable Limit Switch (PLS) Outputs 35
 Auxiliary Encoder Input 36
 Programmable Analog I/O 36
 Motor Thermistor .. 36
 4.1.3 Feedback Operation 37
 Absolute Encoder .. 37
 1 Vp-p Sin/Cos Encoder 37
 Incremental Encoder 38
 Hall Sensors ... 38
 Tachometer (±10 VDC) 38
 4.1.4 Logic Power Supply 39
 4.1.5 Power Supply Connections 40
 AC or DC Power Modules 40
 DC Only Power Modules 41
 4.1.6 Power LEDs Functionality 41
 Power LED .. 41
 Status LED .. 41
 4.1.7 Motor Connections 42
 4.1.8 External Shunt Resistor Connections 43
 4.1.9 STO (Safe Torque Off) 44
 STO Disable .. 45
 STO Operation Test 45
 4.1.10 Communication and Commissioning 46
 Ethernet Node ID/Address 46
 Network Communication LEDs Functionality 46
 4.1.11 Commutation .. 48
 Sinusoidal Commutation 48
Trapezoidal Commutation 48
4.1.12 Homing ... 49
4.1.13 Firmware ... 49

A Specifications .. 50
A.1 Specifications Tables 50

B Troubleshooting 52
B.1 Fault Conditions and Symptoms 52
 Over-Temperature .. 52
 Over-Voltage Shutdown 52
 Under-Voltage Shutdown 52
 Short Circuit Fault 53
 Invalid Hall Sensor State 53
 B.1.1 Software Limits 53
 B.1.2 Connection Problems 53
 B.1.3 Overload .. 53
 B.1.4 Current Limiting 54
 B.1.5 Motor Problems 54
 B.1.6 Causes of Erratic Operation 54
 B.2 Technical Support 55
 B.2.1 Drive Model Information 55
 B.2.2 Product Label Description 55
 B.2.3 Warranty Returns and Factory Help 56

Index I
This section discusses characteristics of your DPP digital drive to raise your awareness of potential risks and hazards. The severity of consequences ranges from frustration of performance, through damage to equipment, injury or death. These consequences, of course, can be avoided by good design and proper installation into your mechanism.

1.1 General Safety Overview

In order to install a DPP drive into a servo system, you must have a thorough knowledge and understanding of basic electronics, computers and mechanics as well as safety precautions and practices required when dealing with the possibility of high voltages or heavy, strong equipment.

Observe your facility's lock-out/tag-out procedures so that work can proceed without residual power stored in the system or unexpected movements by the machine.

Notice

You must install and operate motion control equipment so that you meet all applicable safety requirements. Ensure that you identify the relevant standards and comply with them. Failure to do so may result in damage to equipment and personal injury.

Read this entire manual prior to attempting to install or operate the drive. Become familiar with practices and procedures that allow you to operate these drives safely and effectively. You are responsible for determining the suitability of this product for the intended application. The manufacturer is neither responsible nor liable for indirect or consequential damages resulting from the inappropriate use of this product.

Caution

Over current protective devices recognized by an international safety agency must be installed in line before the servo drive. These devices shall be installed and rated in accordance with the device installation instructions and the specifications of the servo drive (taking into consideration inrush currents, etc.). Servo drives that incorporate their own primary fuses do not need to incorporate over current protection in the end user's equipment.
High-performance motion control equipment can move rapidly with very high forces. Unexpected motion may occur especially during product commissioning. Keep clear of any operational machinery and never touch them while they are working.

Keep clear of all exposed power terminals (motor, DC Bus, shunt, DC power, transformer) when power is applied to the equipment. Follow these safety guidelines:

- When using a separate logic supply, turn on the logic power supply first before turning on the main power supply.
- Always turn off the main power and allow sufficient time for complete discharge before making any connections to the drive.
- Do not rotate the motor shaft without power. The motor acts as a generator and will charge up the power supply capacitors through the drive. Excessive speeds may cause over-voltage breakdown in the power output stage. Note that a drive having an internal power converter that operates from the high voltage supply will become operative.
- Do not short the motor leads at high motor speeds. When the motor is shorted, its own generated voltage may produce a current flow as high as 10 times the drive current. The short itself may not damage the drive but may damage the motor. If the connection arcs or opens while the motor is spinning rapidly, this high voltage pulse flows back into the drive (due to stored energy in the motor inductance) and may damage the drive.
- Do not make any connections to any internal circuitry. Only connections to designated connectors are allowed.
- Do not make any connections to the drive while power is applied.
- Do not reverse the power supply leads! Severe damage will result!
- If using relays or other means to disconnect the motor leads, be sure the drive is disabled before reconnecting the motor leads to the drive. Connecting the motor leads to the drive while it is enabled can generate extremely high voltage spikes which will damage the drive.

Use sufficient capacitance!

Pulse Width Modulation (PWM) drives require a capacitor on the high voltage supply to store energy during the PWM switching process. Insufficient power supply capacitance causes problems particularly with high inductance motors. During braking much of the stored mechanical energy is fed back into the power supply and charges its output capacitor to a higher voltage. If the charge reaches the drive’s over-voltage shutdown point, output current and braking will cease. At that time energy stored in the motor inductance continues to flow through diodes in the drive to further charge the power supply capacitance. The voltage rise depends upon the power supply capacitance, motor speed, and inductance.
Safety / General Safety Overview

Make sure minimum inductance requirements are met!

Pulse Width Modulation (PWM) servo drives deliver a pulsed output that requires a minimum amount of load inductance to ensure that the DC motor current is properly filtered. The minimum inductance values for different drive types are shown in the individual data sheet specifications. If the drive is operated below its maximum rated voltage, the minimum load inductance requirement may be reduced. Most servo-motors have enough winding inductance. Some types of motors (e.g. "basket-wound", "pancake", etc.) do not have a conventional iron core rotor, so the winding inductance is usually less than 50 μH.

If the motor inductance value is less than the minimum required for the selected drive, use an external filter card.
This document is intended as a guide and general overview in selecting, installing, and operating *ADVANCED Motion Controls® DigiFl ex® Performance™* digital servo drives that use POWERLINK / Modbus TCP / Ethernet for networking. These specific drives are referred to herein and within the product literature as DPP drives. Other drives in the DigiFl ex Performance product family that utilize other methods of network communication such as CANopen, EtherCAT®, or RS-485 / Modbus RTU are discussed in separate manuals that are available at www.a-m-c.com. Contained within each DigiFl ex Performance product family manual are instructions on system integration, wiring, drive-setup, and standard operating methods.

2.1 DPP Drive Family Overview

The DPP drive family can power three phase or single phase brushless or brushed servomotors, two phase or three phase closed loop stepper motors, and closed loop vector AC induction motors. The command source can be generated externally or can be supplied internally. A digital controller can be used to command and interact with DPP drives, and a number of dedicated and programmable digital and analog input/output pins are available for parameter observation and drive configuration. DPP drives are capable of operating in current (torque), velocity, or position modes, and utilize Space Vector Modulation, which results in higher bus voltage utilization and reduced heat dissipation compared to traditional PWM. DPP drives also offer a variety of firmware-dependent feedback options.

DPP drives offer POWERLINK, Modbus TCP or Ethernet communication for multiple drive networking, and feature a USB interface for drive configuration and setup. Drive commissioning is accomplished using DriveWare, the setup software from *ADVANCED Motion Controls*, available for download at www.a-m-c.com.

2.1.1 Drive Datasheet

Each DPP digital drive has a separate datasheet that contains important information on the options and product-specific features available with that particular drive. The datasheet is to be used in conjunction with this manual for system design and installation.

In order to avoid damage to equipment, only after a thorough reading and understanding of this manual and the specific datasheet of the DPP drive being used should you attempt to install and operate the drive.
2.2 Products Covered

The products covered in this manual adhere to the following part numbering structure. However, additional features and/or options are readily available for OEM’s with sufficient ordering volume. Feel free to contact ADVANCED Motion Controls for further information.

TABLE 2.1 Power Specifications - AC Power Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>015S400</th>
<th>040A400</th>
<th>C060A400</th>
<th>C100A400</th>
<th>030A800</th>
<th>040A800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage (VAC/VDC)</td>
<td>W</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>480 (678)</td>
<td>480 (678)</td>
</tr>
<tr>
<td>AC Supply Voltage Range</td>
<td>W</td>
<td>100-240</td>
<td>100-240</td>
<td>200-240</td>
<td>200-240</td>
<td>200-480</td>
<td>200-480</td>
</tr>
<tr>
<td>AC Supply Minimum</td>
<td>W</td>
<td>90</td>
<td>90</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>AC Supply Maximum</td>
<td>W</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>AC Input Phases</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AC Supply Frequency</td>
<td>Hz</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
</tr>
<tr>
<td>DC Bus Over Voltage Limit</td>
<td>VDC</td>
<td>384</td>
<td>384</td>
<td>420</td>
<td>420</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>DC Bus Under Voltage Limit</td>
<td>VDC</td>
<td>35</td>
<td>55</td>
<td>205</td>
<td>205</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Maximum Peak Output Current</td>
<td>A (Arms)</td>
<td>15 (10.6)</td>
<td>40 (28.3)</td>
<td>60 (42.4)</td>
<td>100 (70.7)</td>
<td>30 (21.2)</td>
<td>60 (42.4)</td>
</tr>
<tr>
<td>Maximum Continuous Output Current</td>
<td>A (Arms)</td>
<td>7.5 (7.5)</td>
<td>20 (26)</td>
<td>30 (36)</td>
<td>50 (56)</td>
<td>15 (10.6)</td>
<td>30 (21.2)</td>
</tr>
<tr>
<td>Max. Continuous Output Power @ Rated Voltage</td>
<td>W</td>
<td>2415</td>
<td>6441</td>
<td>9602</td>
<td>16103</td>
<td>6830</td>
<td>13650</td>
</tr>
<tr>
<td>Max. Continuous Power Dissipation @ Rated Voltage</td>
<td>W</td>
<td>127</td>
<td>339</td>
<td>509</td>
<td>848</td>
<td>360</td>
<td>720</td>
</tr>
<tr>
<td>Internal Bus Capacitance</td>
<td>µF</td>
<td>540</td>
<td>680</td>
<td>1120</td>
<td>1120</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>PWM Switching Frequency</td>
<td>kHz</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>External Shunt Resistor Minimum Resistance</td>
<td>µH</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>note 2</td>
<td>40</td>
</tr>
<tr>
<td>Minimum Load Inductance (Line-To-Line)</td>
<td>µH</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

1. $P = (\text{DC Rated Voltage}) \times (\text{Cont. RMS Current}) \times 0.95$
2. Contact factory before using an external shunt resistor with this power module

TABLE 2.2 Power Specifications - DC Power Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>0208080</th>
<th>1008080</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply Voltage Range</td>
<td>VDC</td>
<td>20-80</td>
<td>20-80</td>
</tr>
<tr>
<td>DC Bus Over Voltage Limit</td>
<td>VDC</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>DC Bus Under Voltage Limit</td>
<td>VDC</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Maximum Peak Output Current</td>
<td>A (Arms)</td>
<td>20 (14.1)</td>
<td>100 (70.73)</td>
</tr>
<tr>
<td>Maximum Continuous Output Current</td>
<td>A (Arms)</td>
<td>10 (10)</td>
<td>60 (86)</td>
</tr>
<tr>
<td>Max. Continuous Output Power @ Rated Voltage</td>
<td>W</td>
<td>700</td>
<td>4550</td>
</tr>
<tr>
<td>Max. Continuous Power Dissipation @ Rated Voltage</td>
<td>W</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>Internal Bus Capacitance</td>
<td>µF</td>
<td>33</td>
<td>500</td>
</tr>
<tr>
<td>PWM Switching Frequency</td>
<td>kHz</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Minimum Load Inductance (Line-To-Line)</td>
<td>µH</td>
<td>600</td>
<td>250</td>
</tr>
</tbody>
</table>
TABLE 2.3 Control Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>DPPANIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Communication</td>
<td>POWERLINK / Modbus TCP / Ethernet (USB for Configuration)</td>
</tr>
<tr>
<td>Command Sources</td>
<td>±10V Analog, Over the Network, Encoder Following, Sequencing, Indexing, Jogging</td>
</tr>
<tr>
<td>Commutation Methods</td>
<td>Sinusoidal, Trapezoidal</td>
</tr>
<tr>
<td>Control Modes</td>
<td>Profile Modes, Cyclic Synchronous Modes, Current, Velocity, Position</td>
</tr>
<tr>
<td>Motors Supported</td>
<td>Three Phase (Brushless Servo), Single Phase (Brushed Servo, Voice Coil, Inductive Load), Stepper (2- or 3-Phase Closed Loop), AC Induction (Closed Loop Vector)</td>
</tr>
<tr>
<td>Hardware Protection</td>
<td>40+ Configurable Functions, Over Current, Over Temperature (Drive & Motor), Over Voltage, Short Circuit (Phase-Phase & Phase-Ground), Under Voltage</td>
</tr>
<tr>
<td>Programmable Digital I/O</td>
<td>11/7</td>
</tr>
<tr>
<td>Programmable Analog I/O</td>
<td>20</td>
</tr>
<tr>
<td>Primary I/O Logic Level</td>
<td>24 VDC</td>
</tr>
</tbody>
</table>

TABLE 2.4 Feedback Options

<table>
<thead>
<tr>
<th>Description</th>
<th>DPPANIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall Sensors</td>
<td>✓</td>
</tr>
<tr>
<td>Incremental Encoder</td>
<td>✓</td>
</tr>
<tr>
<td>Auxiliary Incremental Encoder</td>
<td>✓</td>
</tr>
<tr>
<td>Absolute Encoder (Hiperface®, EnDat®, BiSS C-Mode)</td>
<td>✓</td>
</tr>
<tr>
<td>1Vpp Sine/Cosine Encoder</td>
<td>✓</td>
</tr>
<tr>
<td>Tachometer (10 ±VDC)</td>
<td>✓</td>
</tr>
<tr>
<td>±10 VDC Position</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: Drive will support either Incremental Encoder, Absolute Encoder, or 1Vpp Sine/Cosine Encoder depending on drive firmware.
2.2.1 Control Module

The diagram below shows the general block diagram for the DPPANIU control module. For complete pinouts, consult the drive’s datasheet.

FIGURE 2.2 DPPANIU Control Module
2.3 Communication Protocol

DPP digital drives offer networking capability through POWERLINK, Modbus TCP or Ethernet communication. An auxiliary USB port is featured for configuring the drive through DriveWare.

Ethernet POWERLINK is an open-source real-time industrial Ethernet protocol created by B&R Automation. POWERLINK expands upon Ethernet according to the IEE 802.3 standard with a mixed polling and time slicing mechanism. The POWERLINK communication profile is based on CANopen communication profiles DS301 and DS302. POWERLINK is developed and maintained by the Ethernet POWERLINK Standardization Group (EP SG). For more detailed information on POWERLINK communication with DPP drives and a complete list of register definitions, consult the ADVANCED Motion Controls’ POWERLINK Communication Manual available for download at www.a-m-c.com.

For more information on POWERLINK visit www.ethernet-powerlink.org.

Modbus is an open standard, master slave system developed for communication between multiple devices using a single wire. The Modbus protocol uses a defined message structure, regardless of the physical layer of the network used to communicate. A master device initiate a "query", and slave devices return a "response", supplying the requested data or taking the requested action. The query can be made to individual devices or broadcast to all connected devices. For more detailed information on Modbus TCP communication with DPP drives and a complete list of register definitions, consult the ADVANCED Motion Controls’ Modbus Communication Manual available for download at www.a-m-c.com.

The Modbus TCP protocol for ADVANCED Motion Controls' DPP drives follows the Modbus Application Protocol Specification V1.1b. More information can be found at www.Modbus-IDA.org.
2.4 Control Modes

DPP digital drives operate in a variety of operating modes. The setup and configuration parameters for these modes are commissioned through DriveWare. See the DriveWare Software Manual for mode configuration information.

2.4.1 Profile Modes

In Profile Modes, the trajectory is limited by the drive, using the Command Limiter values to limit the maximum command rate. If the host sends a large command step, the drive spreads the demand over some period of time to stay equal to or below the maximum defined rate.

Profile Current (Torque) In Current (Torque) Mode, the input command voltage controls the output current. The drive will adjust the output duty cycle to maintain the commanded output current. This mode is used to control torque for rotary motors (force for linear motors), but the motor speed is not controlled. The output current and other parameters can be monitored in DriveWare through the digital oscilloscope function. DriveWare also offers configuration of maximum and continuous current limit values.

Note While in Current (Torque) Mode, the drive will maintain a commanded torque output to the motor based on the input reference command. Sudden changes in the motor load may cause the drive to output a high torque command with little load resistance, causing the motor to spin rapidly. Therefore, Current (Torque) Mode is recommended for applications using a digital position controller to maintain system stability.

Profile Velocity In Velocity Mode, the input command voltage controls the motor velocity. This mode requires the use of a feedback element to provide information to the drive about the motor velocity. DPC drives allow velocity control with either Hall Sensors, an encoder, a resolver, or a tachometer as the feedback element. The motor velocity and other parameters can be monitored in DriveWare through the digital oscilloscope function. The feedback element being used for velocity control must be specified in DriveWare, which also offers configuration of velocity limits. See “Feedback Supported” on page 11 for more information on feedback devices.

Profile Position In Position Mode, the input command voltage controls the actual motor position. This mode requires the use of a feedback element to provide information to the drive about the physical motor location. DPC drives allow position control with either an encoder, a resolver, or ±10V Position feedback. The motor position and other parameters can be monitored in DriveWare through the digital oscilloscope function. The feedback element being used for position control must be specified in DriveWare, which also offers configuration of position limits. See “Feedback Supported” on page 11 for more information on feedback devices.

2.4.2 Cyclic Synchronous Modes

Cyclic Synchronous Modes give responsibility of trajectory control to the host. The drive interpolates between command points, defining the rate by dividing the change in command
by the interpolation time period. This allows the drive to respond smoothly to each step in command.

Cyclic Synchronous Current In Cyclic Synchronous Current Mode, the drive closes the current loop. The host is allowed more control by having the ability to instantly add current feedforward values. This allows for gain compensation in applications with varying loads.

Cyclic Synchronous Velocity In Cyclic Synchronous Velocity Mode, the drive closes two control loops: velocity and current. The host is allowed more control by having the ability to instantly add velocity and current feedforward values. This allows for gain compensation in applications with varying loads.

Cyclic Synchronous Position In Cyclic Synchronous Position Mode, the drive closes three control loops: position, velocity, and current. The host can send target position, velocity feedforward, and current feedforward values to the drive. This allows for gain compensation in applications with varying loads.

2.4.3 Current (Torque)

In Current (Torque) Mode, the input command controls the output current. The drive will adjust the output duty cycle to maintain the commanded output current. This mode is used to control torque for rotary motors (force for linear motors), but the motor speed is not controlled. The output current and other parameters can be monitored within the configuration software, or externally through network commands.

While in Current (Torque) Mode, the drive will maintain a commanded torque output to the motor based on the input reference command. Sudden changes in the motor load may cause the drive to output a high torque command with little load resistance, causing the motor to spin rapidly. Therefore, Current (Torque) Mode is recommended for applications using a digital position controller to maintain system stability.

2.4.4 Velocity

In Velocity Mode, the input command controls the motor velocity. This mode requires the use of a feedback element to provide information to the drive about the motor velocity. The motor velocity and other parameters can be monitored within the configuration software, or externally through network commands. See "Feedback Supported" on page 11 for more information on velocity feedback devices.

2.4.5 Position

In Position Mode, the input command controls the actual motor position. This mode requires the use of a feedback element to provide information to the drive about the physical motor location. The motor position and other parameters can be monitored within the configuration software, or externally through network commands. See "Feedback Supported" on page 11 for more information on position feedback devices.
2.5 Feedback Supported

DPP drives feature the ability to support a variety of primary feedback devices by downloading the appropriate firmware into the drive. Compatible firmware-dependent devices are Incremental Encoders, Absolute Sin/Cos Encoders (Hiperface®, EnDat®, and BiSS C-Mode), and 1Vp-p Sin/Cos Encoders. Consult the DriveWare Software Manual for instructions on how to download firmware into a digital servo drive.

Other supported feedback types that do not require a firmware change are Hall Sensors, Auxiliary Incremental Encoder, Tachometer, and ±10 VDC Position feedback.

Feedback Polarity The drive compares the feedback signal to the command signal to produce the required output to the load by continually reducing the error signal to zero. The feedback element must be connected for negative feedback. Connecting the feedback element for positive feedback will lead to a motor “run-away” condition. In a case where the feedback lines are connected to the drive with the wrong polarity, the drive will attempt to correct the “error signal” by applying more command to the motor. With the wrong feedback polarity, this will result in a positive feedback run-away condition. The correct feedback polarity will be determined and configured during commissioning of the drive. Otherwise, to correct this, either change the order that the feedback lines are connected to the drive, or use DriveWare to reverse the internal velocity feedback polarity setting.

2.5.1 Incremental Encoder

DPP drive models can utilize incremental encoder feedback for velocity or position control, with the option of also using the encoder to commutate the motor. The encoder provides incremental position feedback that can be extrapolated into very precise velocity or position information. With an encoder being used as the feedback element, the input command controls the motor velocity or motor position, with the frequency of the encoder pulses closing the velocity and/or position loop. The encoder signals are read as "pulses" that the drive uses to essentially keep track of the motor’s speed, position and direction of rotation. Based on the speed and order in which these pulses are received from the encoder, the drive can interpret the motor velocity and physical location. The actual motor speed and physical location can be monitored within the configuration software, or externally through network commands.

Figure 2.3 below represents differential encoder "pulse" signals, showing how dependent on which signal is read first and at what frequency the "pulses" arrive, the speed and direction of the motor shaft can be extrapolated. By keeping track of the number of encoder "pulses" with respect to a known motor "home" position, DPP drives are able to ascertain the actual motor location.
2.5.2 Absolute Encoder

DPP drives support Hiperface®, EnDat® (2.1/2.2 command set), or BiSS C-Mode absolute encoders for velocity and absolute position feedback. The encoder resolution and other options can be configured within the drive configuration software. The drive breaks down the signals from the encoder into individual reference points (counts). For feedback devices that accept 1 Vp-p signals, the interpolation is configurable in powers of 2 from 1 to 512 lines per Sin/Cos cycle. The quadrature number of counts per cycle is the interpolation value multiplied by 4, as shown in Figure 2.4. This allows for very high interpolated encoder resolution (4-2048 counts).

The absolute position feedback eliminates the need for a homing routine when the drive is powered on.
2.5.3 1Vp-p Sin/Cos Encoder

DPP drives support 1Vp-p Sin/Cos encoders for position and velocity feedback. The drive breaks down the 1 Vp-p sinusoidal signals from the encoder into individual reference points (counts). The interpolation is configurable in powers of 2 from 1 to 512 lines per Sin/Cos cycle. The quadrature number of counts per cycle is the interpolation value multiplied by 4, as shown in Figure 2.4. This allows for very high interpolated encoder resolution (4-2048 counts per Sin/Cos cycle).

2.5.4 Hall Sensors

DPP drives can use single-ended or differential Hall Sensors for commutation and/or velocity control. The Hall Sensors (typically three) are built into the motor to detect the position of the rotor magnetic field. With Hall Sensors being used as the feedback element, the input command controls the motor velocity, with the Hall Sensor frequency closing the velocity loop.

Hall velocity mode is not optimized for relatively high or relatively low Hall frequencies. To determine if Hall velocity mode is right for your application, contact Applications Engineering.

For more information on using Hall Sensors for trapezoidal commutation, see “Trapezoidal Commutation” on page 48.

2.5.5 Auxiliary Incremental Encoder

The auxiliary encoder input pins can be used as a command source for encoder following mode, or as a secondary feedback device input for closing the position loop. The particular function is configured in the configuration software.

2.5.6 Tachometer (±10 VDC)

DPP drives support the use of a tachometer for velocity feedback. The tachometer measures the rotary speed of the motor shaft and returns an analog voltage signal to the drive for velocity control. DPP drives provide a Programmable Analog Input on the motor Feedback Connector that is available for use with a tachometer. The tachometer signal is limited to ±10 VDC.

2.5.7 ±10 VDC Position

DPP drives accept an analog ±10 VDC Position feedback, typically in the form of a load-mounted potentiometer. The feedback signal must be conditioned so that the voltage does not exceed ±10 V, and is connected to the drive through the Programmable Analog Input. In DriveWare, the connection method that is used must be selected under the Position Loop Feedback options. See the DriveWare Software Guide for more information.
2.6 Command Sources

The input command source for DPP drives can be configured for one of the following options.

2.6.1 ±10V Analog

DPP drives accept a single-ended or differential analog signal with a range of ±10 V from an external source. The input command signals should be connected to the programmable input on the I/O Signal Connector. See “Programmable Analog I/O” on page 36 for more information.

2.6.2 Encoder Following

DPP drives can utilize Encoder Following as a form of input command. In Encoder Following mode, an auxiliary encoder signal can be used to command the drive in a master/slave configuration. The gearing ratio (input counts to output counts ratio) can be configured in DriveWare by the user. Encoder Following is only a valid option when the DPP drive is operated in position mode.

2.6.3 Indexing and Sequencing

DPP drives allow configuration of up to 16 separately defined Index tasks in DriveWare. Indexes can be either Absolute (commands a pre-defined move to an absolute position) or Relative (commands a pre-defined move relative to the current position). Indexes can be combined with Homing routines and other control functions to form up to 16 different Sequences. Sequences can be configured to initiate on power-up, via a digital input, or by using an external network command.

2.6.4 Jogging

DPP drives allow configuration of two separate Jog velocities in DriveWare, commanding motion at a defined constant velocity with infinite distance.

2.6.5 Over the Network

DPP drives can utilize Modbus TCP or Ethernet network communication as a form of input command through the Ethernet interface. In order to send commands to the drive, the command source in DriveWare must be set to Interface Input 1. For more information on commanding the drive with Modbus TCP, see “Communication and Commissioning” on page 46.
2.7 System Requirements

To successfully incorporate a DPP digital servo drive into your system, you must be sure it will operate properly based on electrical, mechanical, and environmental specifications, follow some simple wiring guidelines, and perhaps make use of some accessories in anticipating impacts on performance.

2.7.1 Specifications Check

Before selecting a DPP digital servo drive, a user should consider the requirements of their system. This involves calculating the voltage, current, torque, and power requirements of the system, as well as considering the operating environment and any other equipment the drive will be interfacing with. Before attempting to install or operate a DPP servo drive, be sure all the following items are available:

- DPP Digital Servo Drive
- DPP Drive Datasheet (specific to your model)
- DPP Series Digital Hardware Installation Manual
- DriveWare Software Guide

2.7.2 Motor Specifications

DPP digital servo drives have a given current and voltage rating unique to each drive. Based on the necessary application requirements and the information from the datasheet of the motor being used, a DPP drive may be selected that will best suit the motor capabilities. Some general guidelines that are useful when pairing a DPP servo drive with a motor:

- The motor current I_M is the required motor current in amps DC, and is related to the torque needed to move the load by the following equation:

$$I_M = \frac{\text{Torque}}{K_T}$$

Where:

K_T - motor torque constant

The motor current will need to be calculated for both continuous and peak operation. The peak torque will be during the acceleration portion of the move profile. The continuous torque is the average torque required by the system during the move profile, including dwell times.

- The system voltage requirement is based on the motor properties and how fast and hard the motor is driven. The system voltage requirement is equal to the motor voltage, V_M, required to achieve the move profile.

$$V_M = (K_E \cdot S_M) + (I_M \cdot R_M)$$

Where:

K_E - motor back EMF constant
S_M - motor speed (use the maximum speed expected for the application)
The motor inductance is vital to the operation of DPP servo drives, as it ensures that the DC motor current is properly filtered.

A motor that does not meet the rated minimum inductance value of the DPP drive may damage the drive! If the motor inductance value is less than the minimum required for the selected drive, use of an external filter card is necessary.

A minimum motor inductance rating can be found in the drive datasheet. If the drive is operated below the maximum rated voltage, the minimum load inductance requirement may be reduced.

2.7.3 Power Supply Specifications

DPP servo drives operate off a single-phase AC Power Supply. To avoid nuisance over- or under-voltage errors caused by fluctuations in the power supply, the system power supply voltage should be at least 10% above the entire system voltage requirement, and at least 10% below the lowest value of the following:

• Drive over voltage
• External shunt regulator turn-on voltage

Use of a shunt regulator is necessary in systems where motor deceleration or a downward motion of the motor load will cause the system’s mechanical energy to be regenerated via the drive back onto the power supply. This regenerated energy can charge the power supply capacitors to levels above that of the DPP drive over-voltage shutdown level. If the power supply capacitance is unable to handle this excess energy, or if it is impractical to supply enough capacitance, then an external shunt regulator must be used to dissipate the regenerated energy. The shunt regulator will "turn-on" at a certain voltage level (set below the drive over-voltage shutdown level) and discharge the regenerated electric energy in the form of heat.

The power supply current rating is based on the maximum current that will be required by the system. If the power supply powers more than one drive, then the current requirements for each drive should be added together. Due to the nature of servo drives, the current into the drive does not always equal the current out of the drive. However, the power in is equal to the power out. Use the following equation to calculate the power supply output current, I_{PS}, based on the motor current requirements.

$$I_{PS} = \frac{V_M \cdot I_M}{V_{PS} \cdot (0.98)}$$

Where:

- V_{PS} - nominal power supply voltage
- I_M - motor current
- V_M - motor voltage
Use values of V and I at the point of maximum power in the move profile (when $V_{M}I_{M} = \text{max}$). This will usually be at the end of a hard acceleration when both the torque and speed of the motor is high.

2.7.4 Environment

To ensure proper operation of a DPP servo drive, it is important to evaluate the operating environment prior to installing the drive.

TABLE 2.5 Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>90%, non-condensing</td>
</tr>
<tr>
<td>Baseplate Maximum Allowable Temperature</td>
<td>0 - 75 ºC</td>
</tr>
</tbody>
</table>

Shock/Vibrations While DPP drives are designed to withstand a high degree of mechanical shock and vibration, too much physical abuse can cause erratic behavior, or cause the drive to cease operation entirely. Be sure the drive is securely mounted in the system to reduce the shock and vibration the drive will be exposed to. The best way to secure the drive against mechanical vibration is to use screws to mount the DPP drive against its baseplate. For information on mounting options and procedures, see “Mounting” on page 30.

Caution Care should be taken to ensure the drive is securely mounted in a location where no moving parts will come in contact with the drive.

Ambient Temperature Range and Thermal Data DPP drives contain a built-in over-temperature disabling feature if the baseplate temperature rises above 75 degrees Celsius. For a specific AC supply voltage and a specific output current, Figure 2.5 below specifies an upper limit to the ambient temperature range DPP drives can operate within while keeping the baseplate temperature below the maximum baseplate temperature. It is recommended to mount the baseplate of the DPP drive to a heatsink and/or use fan cooling for best thermal management results. For mounting instructions see “Mounting” on page 30.
FIGURE 2.5 DPP Drives Maximum Ambient Temperature Range

Maximum Ambient °C
DPPANIU-015S400 Drive Models at 240VAC

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Maximum Ambient °C
DPPANIU-C060A400 Drive Models at 208VAC

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Maximum Ambient °C
DPPANIU-C100A400 Drive Models at 208VAC

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Maximum Ambient °C
DPPANIU-020B080 Drive Models at 80VDC

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Maximum Ambient °C
DPPANIU-060A800 Drive Models at 480VAC

Continuous Output Current (Amps)

Continuous Output Current (Amps)

Continuous Output Current (Amps)

1. The heatsink used in the above test is a 15" x 22" x 0.65" aluminum plate.
2. Contact the factory for DPPANIU-100B080 thermal data.
Integration in the Servo System

This chapter will give various details on incorporating a DPP servo drive into a system, such as how to properly ground the DPP drive along with the entire system, and how to properly connect motor wires, power supply wires, feedback wires, communication cables, and inputs into the DPP drive.

3.1 LVD Requirements

The servo drives covered in the LVD Reference report were investigated as components intended to be installed in complete systems that meet the requirements of the Machinery Directive. In order for these units to be acceptable in the end users’ equipment, the following conditions of acceptability must be met.

1. European approved overload and current protection must be provided for the motors as specified in section 7.2 and 7.3 of EN60204.1.
2. A disconnect switch shall be installed in the final system as specified in section 5.3 of EN60204.1.
3. All drives that do not have a grounding terminal must be installed in, and conductively connected to a grounded end use enclosure in order to comply with the accessibility requirements of section 6, and to establish grounding continuity for the system in accordance with section 8 of EN60204.1.
4. A disconnecting device that will prevent the unexpected start-up of a machine shall be provided if the machine could cause injury to persons. This device shall prevent the automatic restarting of the machine after any failure condition shuts the machine down.
5. European approved over current protective devices must be installed in line before the servo drive, these devices shall be installed and rated in accordance with the installation instructions (the installation instructions shall specify an over current rating value as low as possible, but taking into consideration inrush currents, etc.). Servo drives that incorporate their own primary fuses do not need to incorporate over protection in the end users’ equipment.

These items should be included in your declaration of incorporation as well as the name and address of your company, description of the equipment, a statement that the servo drives must not be put into service until the machinery into which they are incorporated has been declared in conformity with the provisions of the Machinery Directive, and identification of the person signing.
3.2 CE-EMC Wiring Requirements

The following sections contain installation instructions necessary for meeting EMC requirements.

Contact the factory for assistance in determining the type of drive in use.

General

1. Shielded cables must be used for all interconnect cables to the drive and the shield of the cable must be grounded at the closest ground point with the least amount of resistance.
2. The drive's metal enclosure must be grounded to the closest ground point with the least amount of resistance.
3. The drive must be mounted in such a manner that the connectors and exposed printed circuit board are not accessible to be touched by personnel when the product is in operation. If this is unavoidable there must be clear instructions that the amplifier is not to be touched during operation. This is to avoid possible malfunction due to electrostatic discharge from personnel.

Analog Input Drives

4. A Fair Rite model 0443167251 round suppression core must be fitted to the low level signal interconnect cables to prevent pickup from external RF fields.

PWM Input Drives

5. A Fair Rite model 0443167251 round suppression core must be fitted to the PWM input cable to reduce electromagnetic emissions.

MOSFET Switching Drives

6. A Fair Rite model 0443167251 round suppression core must be fitted at the load cable connector to reduce electromagnetic emissions.
7. An appropriately rated Cosel TAC series AC power filter in combination with a Fair Rite model 5977002701 torroid (placed on the supply end of the filter) must be fitted to the AC supply to any MOSFET drive system in order to reduce conducted emissions fed back into the supply network.

IGBT Switching Drives

8. An appropriately rated Cosel Tac series AC power filter in combination with a Fair Rite model 0443167251 round suppression core (placed on the supply end of the filter) must be fitted to the AC supply to any IGBT drive system in order to reduce conducted emissions fed back into the supply network.
9. A Fair Rite model 0443164151 round suppression core and model 5977003801 torroid must be fitted at the load cable connector to reduce electromagnetic emissions.

Fitting of AC Power Filters

10. It is possible for noise generated by the machine to "leak" onto the main AC power, and then get distributed to nearby equipment. If this equipment is sensitive, it may be
adversely affected by the noise. AC power filters can filter this noise and keep it from getting on the AC power signal. The above mentioned AC power filters should be mounted flat against the enclosure of the product using the mounting lugs provided on the filter. Paint should be removed from the enclosure where the filter is fitted to ensure good metal to metal contact. The filter should be mounted as close to the point where the AC power filter enters the enclosure as possible. Also, the AC power cable on the load end of the filter should be routed far from the AC power cable on the supply end of the filter and all other cables and circuitry to minimize RF coupling.

3.2.1 Ferrite Suppression Core Set-up

If PWM switching noise couples onto the feedback signals or onto the signal ground, then a ferrite suppression core can be used to attenuate the noise. Take the motor leads and wrap them around the suppression core as many times as reasonable possible, usually 2-5 times. Make sure to strip back the cable shield and only wrap the motor wires. There will be two wires for single phased (brushed) motors and 3 wires for three phase (brushless) motors. Wrap the motor wires together as a group around the suppression core and leave the motor case ground wire out of the loop. The suppression core should be located as near to the drive as possible. TDK ZCAT series snap-on filters are recommended for reducing radiated emissions on all I/O cables.

3.2.2 Inductive Filter Cards

Inductive filter cards are added in series with the motor and are used to increase the load inductance in order to meet the minimum load inductance requirement of the drive. They also serve to counteract the effects of line capacitance found in long cable runs and in high voltage systems. These filter cards also have the added benefit of reducing the amount of PWM noise that couples onto the signal lines.
3.3 Grounding

In most servo systems the case grounds of all the system components should be connected to a single Protective Earth (PE) ground point in a "star" configuration. Grounding the case grounds at a central PE ground point through a single low resistance wire reduces the chance for ground loops and helps to minimize high frequency voltage differentials between components. All ground wires must be of a heavy gauge and be as short as possible. The following should be securely grounded at the central PE grounding point:

- Motor chassis
- Controller chassis
- Power supply chassis
- DPP drive chassis

FIGURE 3.1 System Grounding

Ground cable shield wires at the drive side to a chassis earth ground point.

The power ground and the input reference command signal ground are oftentimes at a different potential than chassis/PE ground. The signal ground of the controller must be connected to the signal ground of the DPE drive to avoid picking up noise due to the "floating" differential servo drive input. In systems using an isolated DC power supply, signal ground and/or power ground can be referenced to chassis ground. First decide if this is both appropriate and safe. If this is the case, they can be grounded at the central grounding point.

Grounding is important for safety. The grounding recommendations in this manual may not be appropriate for all applications and system machinery. It is the responsibility of the system designer to follow applicable regulations and guidelines as they apply to the specific servo system.
3.4 Wiring

Servo system wiring typically involves wiring a controller (digital or analog), a servo drive, a power supply, and a motor. Wiring these servo system components is fairly easy when a few simple rules are observed. As with any high efficiency PWM servo drive, the possibility of noise and interference coupling through the cabling and wires can be harmful to overall system performance. Noise in the form of interfering signals can be coupled:

- Capacitively (electrostatic coupling) onto signal wires in the circuit (the effect is more serious for high impedance points).
- Magnetically to closed loops in the signal circuit (independent of impedance levels).
- Electromagnetically to signal wires acting as small antennas for electromagnetic radiation.
- From one part of the circuit to other parts through voltage drops on ground lines.

The main source of noise is the high DV/DT (typically about 1V/nanosecond) of the drive's output power stage. This PWM output can couple back to the signal lines through the output and input wires. The best methods to reduce this effect are to move signal and motor leads apart, add shielding, and use differential inputs at the drive. For extreme cases, use of an inductive filter card or a noise suppression device is recommended.

Unfortunately, low-frequency magnetic fields are not significantly reduced by metal enclosures. Typical sources are 50 or 60 Hz power transformers and low frequency current changes in the motor leads. Avoid large loop areas in signal, power-supply, and motor wires. Twisted pairs of wires are quite effective in reducing magnetic pick-up because the enclosed area is small, and the signals induced in successive twist cancel.

ADVANCED Motion Controls recommends using the following hand crimp tools for the appropriate I/O and Feedback cable and wire preparation. Consult the drive datasheet to see which connectors are used on a specific drive.

<table>
<thead>
<tr>
<th>Drive Connector</th>
<th>Hand Crimp Tool Manufacturer and Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-pin, 3.96 mm spaced, friction lock header</td>
<td>Tyco: P/N 770522-1</td>
</tr>
<tr>
<td>High Density D-sub headers</td>
<td>Tyco: P/N 90800-1</td>
</tr>
</tbody>
</table>

3.4.1 Wire Gauge

As the wire diameter decreases, the impedance increases. Higher impedance wire will broadcast more noise than lower impedance wire. Therefore, when selecting the wire gauge for the motor power wires, power supply wires, and ground wires, it is better to err on the side of larger diameter wire rather than too thin. This becomes more critical as the cable length increases. The following table provides recommendations for selecting the appropriate wire size for a specific current. These values should be used as reference only. Consult any applicable national or local electrical codes for specific guidelines.

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>Minimum Wire Size (AWG)</th>
<th>mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>#20</td>
<td>0.518</td>
</tr>
<tr>
<td>15</td>
<td>#18</td>
<td>0.823</td>
</tr>
<tr>
<td>20</td>
<td>#16</td>
<td>1.31</td>
</tr>
<tr>
<td>35</td>
<td>#14</td>
<td>2.08</td>
</tr>
<tr>
<td>45</td>
<td>#12</td>
<td>3.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>Minimum Wire Size (AWG)</th>
<th>mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>#10</td>
<td>5.26</td>
</tr>
<tr>
<td>80</td>
<td>#8</td>
<td>8.37</td>
</tr>
<tr>
<td>120</td>
<td>#6</td>
<td>13.3</td>
</tr>
<tr>
<td>150</td>
<td>#0</td>
<td>53.5</td>
</tr>
<tr>
<td>200</td>
<td>#00</td>
<td>67.4</td>
</tr>
</tbody>
</table>
3.4.2 Motor Wires

The motor power wires supply power from the drive to the motor. Use of a twisted, shielded pair for the motor power cables is recommended to reduce the amount of noise coupling to sensitive components.

- For a single phase motor or voice coil, twist the two motor wires together as a group.
- For a three phase motor, twist all three motor wires together as a group.

Caution

DO NOT use wire shield to carry motor current or power!

Ground the motor power cable shield at one end only to the drive chassis ground. The motor power leads should be bundled and shielded in their own cable and kept separate from feedback signal wires.

3.4.3 Power Supply Wires

The PWM current spikes generated by the power output-stage are supplied by the internal power supply capacitors. In order to keep the current ripple on these capacitors to an acceptable level it is necessary to use heavy power supply leads and keep them as short as possible. Reduce the inductance of the power leads by twisting them. Ground the power supply cable shield at one end only to the drive chassis ground.

When multiple drives are installed in a single application, precaution regarding ground loops must be taken. Whenever there are two or more possible current paths to a ground connection, damage can occur or noise can be introduced in the system. The following rules apply to all multiple axis installations, regardless of the number of power supplies used:

1. Run separate power supply leads to each drive directly from the power supply filter capacitor.
2. Never "daisy-chain" any power or DC common connections. Use a "star"-connection instead.

3.4.4 Feedback Wires

Use of a twisted, shielded pair for the feedback wires is recommended. Ground the shield at one end only to the drive chassis ground. Also make sure that the feedback connector and D-sub shell preserve the shield continuity. Route cables and/or wires to minimize their length and exposure to noise sources. The motor power wires are a major source of noise, and the motor feedback wires are susceptible to receiving noise. This is why it is never a good idea to route the motor power wires with the motor feedback wires, even if they are shielded. Although both of these cables originate at the drive and terminate at the motor, try to find separate paths that maintain distance between the two. A rule of thumb for the minimum distance between these wires is 10cm for every 10m of cable length.
3.4.5 I/O and Signal Wires

Use of a twisted, shielded pair for the I/O and Signal wires is recommended. Connect the shield to the drive chassis ground. The servo drive’s reference input circuit will attenuate the common mode voltage between signal source and drive power grounds.

In case of a single-ended reference signal when using ±10V as the input command source, connect the command signal to "+ REF IN" and connect the command return and "- REF IN" to signal ground.

Long signal wires (10-15 feet and up) can also be a source of noise when driven from a typical OP-AMP output. Due to the inductance and capacitance of the wire the OP-AMP can oscillate. It is always recommended to set a fixed voltage at the controller and then check the signal at the drive with an oscilloscope to make sure that the signal is noise free.
3.5 Connector Types

Depending on the specific drive model, typically a DPP drive connection interface will consist of:

- **Power Connectors** - used for Logic, Motor, and AC or DC Power, as well as optional external shunt regulator connections
- **Feedback Connectors** - used for primary and auxiliary feedback connections, programmable inputs and outputs, and other drive functions
- **Ethernet Communication Connector** - used for networking connections
- **Auxiliary USB Communication Connector** - used for USB drive communication necessary for commissioning with DriveWare
- **I/O Signal Connector** - used for programmable inputs and outputs as well as some feedback connections.
- **STO Connector** - used for Safe Torque Off (STO) functionality.

The different types of connectors used in the DPP drive series are shown in the sections below. Consult the specific drive datasheet for the actual connectors and pin labels used on the drive.

3.5.1 Power Connectors

TABLE 3.1 +24V LOGIC - Logic Power Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>2-port, 3.5 mm spaced insert connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td>Phoenix Contact: P/N 1840366</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE 3.2 POWER / MOTOR POWER / BRAKE - Power Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>10-port, 5.08 mm spaced, enclosed, friction lock header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td>Phoenix Contact: P/N 1781069</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>
TABLE 3.3 POWER / MOTOR POWER / LOGIC - Power Connector

<table>
<thead>
<tr>
<th>BRAKE/LOGIC - Logic Power Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Information</td>
<td>6-pin, 3.96 mm spaced, friction lock header</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>AMP: Plug P/N 770849-6; Terminals P/N 770222-1 (loose) or 770476-1 (strip)</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE 3.4 AC POWER / MOTOR POWER / DC POWER - Power Connector

<table>
<thead>
<tr>
<th>AC POWER / MOTOR POWER / DC POWER - Power Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Information</td>
<td>4-port, 10.16 mm spaced, enclosed, friction lock header</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

TABLE 3.5 AC POWER / MOTOR POWER - Power Connector

<table>
<thead>
<tr>
<th>AC POWER / MOTOR POWER / DC POWER - Power Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Information</td>
<td>4-port, 5.0 mm spaced, push-in front spring connection header</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Push-in direct plug-in method for solid or stranded conductors with or without ferrules</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE 3.6 DC POWER - Power Connector

<table>
<thead>
<tr>
<th>AC POWER / MOTOR POWER / DC POWER - Power Connector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector Information</td>
<td>5-port, 5.0 mm spaced, push-in front spring connection header</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Push-in direct plug-in method for solid or stranded conductors with or without ferrules</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
TABLE 3.7 DC POWER / MOTOR POWER - Power Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>DC POWER / MOTOR POWER - Power Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-port, 7.62 mm spaced, enclosed, friction lock header</td>
<td></td>
</tr>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td>Phoenix Contact: P/N 1804920</td>
<td></td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE 3.8 AC POWER - Power Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>ACPOWER - Power Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-port, 7.62 mm spaced, enclosed, friction lock header</td>
<td></td>
</tr>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td>Phoenix Contact: P/N 1804917</td>
<td></td>
</tr>
<tr>
<td>Included with Drive</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3.5.2 Feedback Connectors

TABLE 3.9 FEEDBACK - Feedback Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>FEEDBACK - Feedback Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-pin, high-density, female D-sub</td>
<td></td>
</tr>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td>TYCO: Plug P/N 748364-1; Housing P/N 5748677-2; Terminals P/N 1658670-2 (loose) or 1658670-1 (strip)</td>
<td></td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>
TABLE 3.10 AUX ENCODER - Auxiliary Feedback Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>15-pin, high-density, male D-sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td>TYCO: Plug P/N 1658681-1; Housing P/N 5748677-2; Terminals P/N 1658686-2 (loose) or 1658686-1 (strip)</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>

3.5.3 I/O Connectors

TABLE 3.11 I/O - Signal Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>26-pin, high density, female D-sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td>TYCO: Plug P/N 1658671-1; Housing P/N 5748677-3; Terminals P/N 1658670-2 (loose) or 1658670-1 (strip)</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>

3.5.4 Communication Connectors

TABLE 3.12 COMM - Ethernet Communication Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>Shielded, dual RJ-45 socket with LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td>Details</td>
</tr>
<tr>
<td></td>
<td>Standard CAT 5e or CAT 6 ethernet cable</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>
TABLE 3.13 AUX COMM - USB Communication Connector

<table>
<thead>
<tr>
<th>Connector Information</th>
<th>5-pin, Mini USB B Type port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>TYCO: 1496579-3 (2-meter STD-A to MINI-B ASSY)</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>

3.5.5 STO Connector

TABLE 3.14 Safe Torque Off (STO) connector

<table>
<thead>
<tr>
<th>STO Connector</th>
<th>8-port, 2.00 mm spaced, enclosed, friction lock header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Molex: P/N 51110-0860 (housing); 50394-8051 (pins)</td>
</tr>
<tr>
<td>Included with Drive</td>
<td>No</td>
</tr>
</tbody>
</table>

3.6 Mounting

DPP drives provide a number of mounting configuration options. The drive baseplate includes perimeter mounting screwholes allowing different mounting arrangements depending on the requirements or space limitations of the system. See the drive datasheet for specific mounting dimensions and screwhole locations.
This chapter will present a brief introduction on how to test and operate a DPP servo drive. Read through this entire section before attempting to test the drive or make any connections.

4.1 Features and Getting Started

To begin operation with your DPP drive, be sure to read and understand the previous chapters in this manual as well as the drive datasheet and the DriveWare Software Guide. Ensure that all system specifications and requirements have been met, and become familiar with the capabilities and functions of the DPP drive. Also, be aware of the “Troubleshooting” section at the end of this manual for solutions to basic operation issues.

4.1.1 Initial Setup and Configuration

Carefully follow the grounding and wiring instructions in the previous chapters to make sure your system is safely and properly set up. For initial testing purposes, it is not necessary to use a controller to provide a command input, or to have any load attached to the motor. The items required will be:

- DPP Servo Drive
- Motor
- AC Power Supply and Logic Power Supply for supplying power to system
- DriveWare Setup Software and Software Guide for detailed instructions on how to setup, tune and configure a DPP drive in DriveWare
The following steps outline the general procedure to follow when commissioning a DPP drive for the first time. The DriveWare Software Guide contains more detailed information on each step.

1. **Check System Wiring:** Before beginning, check the wiring throughout the system to ensure proper connections and that all grounding and safety regulations have been followed appropriately for the system.

2. **Apply Power:** Power must be applied to the drive before any communication or configuration can take place. Turn on the Logic supply first for drives using a separate logic supply, then turn on the main Power supply. Use a multimeter or voltmeter to check that both power supply levels are within their specified ranges.

3. **Establish Connection:** Open DriveWare on the PC. The DPP drive should be connected to the PC with a USB cable. Choose the “Connect to a drive” option when DriveWare starts, and enter the appropriate communication settings in the options window that appears. See the DriveWare Software Guide for more information on connecting to a drive. For connection issues, see “Connection Problems” on page 53.

4. **Configure the drive in DriveWare:** DriveWare allows the user to manually configure user units, motor and feedback information, system parameters and limits, tune the Current, Velocity and Position Loops, commutate the motor, and assign drive and software "actions" to specific events. Consult the DriveWare Software Guide for detailed instructions.

5. **Connect to the Controller:** Once the drive has been properly commissioned, use an external controller to command an input signal to the drive. The controller wiring and setup should follow the safety and grounding guidelines and conventions as outlined in “Grounding” on page 22.
4.1.2 Input/Output Pin Functions

DPP drives provide a number of various input and output pins for parameter observation and drive configuration options. Consult the drive datasheet to see which input/output pin functions are available for each drive.

Programmable Digital I/O The single-ended and differential Programmable Digital I/O can be assigned to over 40 different functions in DriveWare. The polarity of the signals can be set to active HIGH or active LOW depending on the preference of the user. The differential high speed inputs can also be used as command source inputs with an Auxiliary Encoder (see “Auxiliary Encoder Input” below). DPP drives offer both isolated and non-isolated Programmable Digital I/O.

When set to Active High, digital outputs will be pulled high for a period of time after a power cycle or drive reset. The delay period is given below.

TABLE 4.1 Programmable Digital Output Power-up Delays

<table>
<thead>
<tr>
<th>Active High</th>
<th>Active Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Cycle Delay (ms)</td>
<td>Reset Delay (ms)</td>
</tr>
<tr>
<td>1900</td>
<td>-</td>
</tr>
</tbody>
</table>

24VDC Digital I/O Specification

The 24VDC Digital I/O is designed to be compatible with controllers that interface with 24VDC signals, using optical isolation that separates the drive signal ground from the controller signal ground. Isolation increases a system's noise immunity by helping to eliminate current loops and ground currents.

- **Inputs** - The Isolated Digital Inputs use bi-directional optical isolators to detect signals from the controller. Dual LED’s in the optical isolator allow current to flow in either direction. Current flow through the LED activates the transistor, and the drive responds depending on whether the transistor is active or not. The presence or absence of current
in the LED determines the logic level, not the direction of current. This flexibility allows the Isolated Digital Inputs to be compatible with a wide range of controllers.

TABLE 4.2 24VDC Isolated Digital Input

<table>
<thead>
<tr>
<th>Logical LOW</th>
<th>0-1V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical HIGH</td>
<td>15-30V (24V Nominal)</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>7mA @ 24V</td>
</tr>
</tbody>
</table>

When current flows into the digital input it is acting as a sinking input. When current flows out of the digital input it is acting as a sourcing input. Since current is allowed to flow in either direction, the inputs can either sink or source. The voltage at the Input Common pin determines whether the inputs sink or source. The Input Common pin is common to all of the inputs, but is isolated from the drive signal ground.

To configure the Isolated Digital Inputs as sinking, the 24V ground is applied to the Input Common and 24V is modulated at the digital input. Figure 4.2 shows a sourcing output from the motion controller feeding the sinking input at the drive. In this example the controller uses a transistor to control the 24V to the drive input. A mechanical switch, relay or other voltage-controlling device can be used in place of the transistor.

FIGURE 4.2 24VDC Isolated Digital Input configured as a sinking input

To configure the Isolated Digital Input as sourcing 24V is applied to the Input Common and the 24V ground is modulated at the digital input. Figure 4.3 shows the 24V supply rearranged so it feeds into the Input Common pin. As in the previous example, other switching devices can control the inputs besides a transistor.

FIGURE 4.3 24VDC Isolated Digital Input configured as a sourcing input.

- **Outputs** - The Isolated Digital Outputs have a common grounding point labeled Output Common, and are +24VDC single-ended outputs.
A transistor controls the voltage at each digital output. The output pin is pulled to 24V and the 24V ground goes to the output common, as shown in Figure 4.4. A transistor controls the voltage at the digital output. When the transistor is open the voltage at the digital output is HIGH. When the transistor is closed the voltage is pulled to ground, which causes the output to go LOW.

FIGURE 4.4 24VDC Isolated Digital Output configured as a sinking output.

TABLE 4.3 24VDC Isolated Digital Output

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Pull-Up Voltage</td>
<td>15-30V (24V nominal, supplied by user)</td>
</tr>
<tr>
<td>Logical LOW</td>
<td>0-2V</td>
</tr>
<tr>
<td>Logical HIGH</td>
<td>Same as Output Pull-Up Voltage</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>120mA</td>
</tr>
</tbody>
</table>

Programmable Limit Switch (PLS) Outputs
When a digital output is configured as a Programmable Limit Switch through the setup software, the maximum frequency of the output will correspond to the table below.

Maximum Digital Output Frequency for PLS Outputs

<table>
<thead>
<tr>
<th>24V I/O Control Modules</th>
<th>Maximum Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85 Hz (50% duty cycle)¹</td>
</tr>
</tbody>
</table>

¹ Higher duty cycles will result in higher maximum frequencies due to hardware filtering.
Auxiliary Encoder Input DPP drives accept a differential auxiliary encoder input that can be used for auxiliary position feedback, or for a command source when configured for Encoder Following. Hardware settings and options can be entered and configured in DriveWare.

Programmable Analog I/O The Programmable Analog I/O can be assigned to drive functions in DriveWare. These can be used to monitor drive signals, and are also useful for troubleshooting unexpected drive behavior. The drive I/O Signal Connector provides a differential programmable analog input that may be used for a ±10V analog input command.

Motor Thermistor A 0-4 kohm thermistor or thermal switch can be connected between MOTOR THERMISTOR and GROUND. Thermistor/switch behavior can be configured in DriveWare.
4.1.3 Feedback Operation

The functional operation of the feedback devices supported by DPP drives is described in this section. For more information on feedback selection, see “Feedback Supported” on page 11. See the drive datasheet specific pin locations.

Absolute Encoder DPP drives support Hiperface®, EnDat®, or BiSS C-Mode absolute encoders. The drive Feedback Connector allows inputs for differential sine and cosine signals, as well as differential Reference Mark inputs and differential RS-485 Data and Clock signals. Hiperface® encoders require an external +12 VDC supply for power, while EnDat® and BiSS C encoders can use the +5V Encoder Supply Output pin provided on the DPP drive. For BiSS C-Mode and EnDat 2.2 encoders, only the Data and Clock inputs are used. The Sine, Cosine, and Index pins can be left open.

1 Vp-p Sin/Cos Encoder DPP drives support 1 Vp-p Sin/Cos Encoder feedback. The drive Feedback Connector allows inputs for differential sine and cosine signals, as well as differential Reference Mark inputs. A +5V Encoder Supply Output pin is provided to supply power to the encoder.
Incremental Encoder DPP drives support incremental encoder feedback. The drive Feedback Connector allows inputs for differential inputs only. Both the "A" and "B" channels of the encoder are required for operation. DPP drives also accept an optional differential "index" channel that can be used for synchronization and homing. A +5V Encoder Supply Output pin is provided to supply power to the encoder.

FIGURE 4.10 Incremental Encoder Connections

Hall Sensors DPP drives accept Hall Sensor feedback primarily for commutation, although they can also be used for velocity control. The drive Feedback Connector allows differential or single-ended Hall Sensor inputs. For single-ended Halls leave the negative terminals open.

FIGURE 4.11 Hall Sensor Input Connections

Tachometer (±10 VDC) DPP drives support the use of a tachometer for velocity feedback. The Programmable Analog Input on the Auxiliary Feedback Connector is available for use with a tachometer. The tachometer signal is limited to ±10 VDC.

FIGURE 4.12 Tachometer Input Connections
4.1.4 Logic Power Supply

For DPP drives using an external +24 VDC nominal logic power supply (850 mA), the logic supply ground should be referenced to the drive signal ground. The logic power inputs are made through a separate Logic Power connector on the drive.

When using a separate logic power supply, the logic power must be turned on before the main power supply.

Table 4.4 AC Power Module Logic Supply Ratings

<table>
<thead>
<tr>
<th>Logic Supply Range (VDC)</th>
<th>Input Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30</td>
<td>850</td>
</tr>
</tbody>
</table>

On drives using DC power modules, an external logic supply is optional. If no external logic supply is connected the drive will use the main DC power supply for logic power. If an external logic power supply is used, the voltage must be below the main DC Power Supply value. Table 4.5 shows the different DC power modules and their corresponding logic supply ranges.

Table 4.5 DC Power Module Logic Supply Ranges.

<table>
<thead>
<tr>
<th>DC Power Module</th>
<th>Logic Supply Range (VDC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>020B080, 100B080</td>
<td>20-80</td>
</tr>
</tbody>
</table>

FIGURE 4.14 DC Power Module Logic Power Supply Inputs

FIGURE 4.13 Logic Power Supply Inputs

Caution: On 515/400 models, Logic Supply Ground is common with Signal Ground.
4.1.5 Power Supply Connections

The figures below show how an external power supply should be connected to the DPP drive.

AC or DC Power Modules For drive models designed for a three-phase AC power supply, connect the AC supply to L1, L2, and L3. On certain drive models, a single-phase AC supply can be connected to any two of the three (L1, L2, L3) AC terminals with the result that some drive power de-rating may occur. See Figure 4.15 below or the drive datasheet for the specific model characteristics. For drives designed for a single phase AC supply, connect the AC supply to the L1 and L2 (N) AC terminals for. Figure 4.15 below shows the recommended connections.

FIGURE 4.15 AC Power Supply Wiring

If using a DC supply to power a drive with an AC power module, follow one of the methods below, depending on the connections available for the specific power module (Figure 4.16 below shows the recommended connections).

- **(Option A)** Connect the isolated DC supply between any two of the three (L1, L2, L3) power terminals. Note that drives powered in this fashion must have peak and continuous current ratings reduced by at least 30% and should not be given current commands that exceed this derating.

- **(Option B)** Some drives feature DC+ and DC- terminals which can be used as DC inputs rather than using L1, L2, or L3. Except for 015S400 power modules, powering the drive in this fashion will require external inrush limiting circuitry that must be properly scaled to the application and drive power requirements.

FIGURE 4.16 DC Power Supply Wiring
DC Only Power Modules For drives using a DC power module, connect the isolated DC supply high voltage to the DC Power Input terminal, and the DC supply ground to the power ground terminal, as shown in Figure 4.17 below.

![DC Power Module Supply Wiring Diagram](image)

FIGURE 4.17 DC Power Module Supply Wiring

- **Power Ground**
- **Isolated DC Power Supply**
- **Shield**
- **+HV GND**
- **Single Point System Ground (PE Ground)**
- **DPP SERVO DRIVE**
- **DC Power Input**
- **Power Ground**
- **Chassis Ground**

4.1.6 Power LEDs Functionality

DPP drives feature LED status indicators for supply power and power bridge status.

Power LED The Power LED indicates whether power is being supplied to the drive, as well as shunt regulator operation.

<table>
<thead>
<tr>
<th>Power LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Power is being supplied to the drive</td>
</tr>
<tr>
<td>OFF</td>
<td>No power is being supplied to the drive</td>
</tr>
<tr>
<td>RED</td>
<td>Drive is shunting excess energy through the shunt regulator (may appear as flashing RED/GREEN as the shunt regulator is turning off and on during regeneration)</td>
</tr>
</tbody>
</table>

Status LED The Status LED indicates whether the drive power bridge is enabled or disabled.

<table>
<thead>
<tr>
<th>Status LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>Power output bridge is enabled</td>
</tr>
<tr>
<td>RED</td>
<td>Power output bridge is disabled (via inhibit or fault)</td>
</tr>
</tbody>
</table>
4.1.7 Motor Connections

The diagrams below show the connections to single and three phase motors. Notice that the motor wires are shielded, and that the motor housing is grounded to the single point system ground (PE Ground). The cable shield should be grounded at the drive side to chassis ground.

FIGURE 4.18 Motor Power Output Wiring.

- **THREE PHASE BRUSHLESS MOTOR**
 (Servo – BLDC/PMAC, Closed Loop Vector, Closed Loop Stepper)

- **SINGLE PHASE MOTOR**
 (Brushed, Voice Coil, Inductive Load)

- **TWO PHASE STEPPER MOTOR**
 (Closed Loop Stepper)

If using relays or other means to disconnect the motor leads, be sure the drive is disabled before reconnecting the motor leads to the drive. Connecting the motor leads to the drive while it is enabled can generate extremely high voltage spikes which will damage the drive.

For applications using stepper motors, the maximum motor speed will be limited (typically ~600 RPM max).
4.1.8 External Shunt Resistor Connections

Most AC powered DPP drives allow the option of connecting an external shunt resistor to protect against damage that may occur due to over-voltage. Drives that do not include an internal shunt resistor require an external shunt resistor for the internal shunt regulator to operate. The figures below show how an external shunt resistor should be connected to the drive for the different AC Power Modules. The internal shunt regulator must be enabled and configured in DriveWare in order to operate.

FIGURE 4.19 C060A400 Power Module External Shunt Resistor Connection

FIGURE 4.20 C100A400 Power Module External Shunt Resistor Connection

FIGURE 4.21 030A800 Power Module External Shunt Resistor Connection

FIGURE 4.22 015S400, 040A400 and 060A800 Power Module External Shunt Resistor Connections
4.1.9 STO (Safe Torque Off)

Some models of the DPP drive family feature an external dedicated +24VDC STO safety function designed to monitor an external 24V STO input from the user system and disable the motor output during an STO event. The STO circuit uses +24VDC sinking single-ended isolated inputs for STO functionality. Both STO1 and STO2 must be active (HIGH) to allow torque output at the drive motor outputs.

<table>
<thead>
<tr>
<th>STO 1</th>
<th>STO 2</th>
<th>Motor Outputs</th>
<th>STO OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active (HIGH)</td>
<td>Active (HIGH)</td>
<td>Enabled</td>
<td>Open</td>
</tr>
<tr>
<td>Active (HIGH)</td>
<td>Not Active (LOW)</td>
<td>Disabled</td>
<td>Closed</td>
</tr>
<tr>
<td>Not Active (LOW)</td>
<td>Active (HIGH)</td>
<td>Disabled</td>
<td>Closed</td>
</tr>
<tr>
<td>Not Active (LOW)</td>
<td>Not Active (LOW)</td>
<td>Disabled</td>
<td>Closed</td>
</tr>
</tbody>
</table>

The STO circuitry also features an STO status output (STO OUT) that signifies when an STO condition has occurred. This status is also viewable in the setup software as an indicator only. The STO OUT output functions as a switch. When an STO event occurs, the STO OUT switch becomes CLOSED. When the drive is in normal functional operation (STO 1 and STO 2 = 24V), the STO OUT switch is OPEN.

The user must verify proper operation of the monitoring circuit (STO 1 and STO 2) at least once per month to maintain SIL 3, Cat 4 / PL e certification. The monitoring circuit is required to be examined by an external logic element when STO is incorporated into a complete drive system in order for proper diagnostics to be fully implemented and utilized in the FMEA calculation (see “STO Operation Test” on page 45). The calculation of the safety relevant parameters are based on a proof test interval of one year and have shown that the requirements of up to SIL 3 are fulfilled. The safety relevant parameters are:

- Safe-Failure-Fraction: SFF = 97%
- Probability of a dangerous failure per hour: PFH = 1.3 x 10^{-8} 1/h
- Average probability of a dangerous failure on demand (1 year): PFD_{avg} = 1.7 x 10^{-5}

The above assessment and safety values defined were assessed with the STO function incorporated into the DigiFlex Performance DPP drive family. Product data for the DPP drive family can be found by visiting www.a-m-c.com.

Note
STO Disable For applications that do not require Safe Torque Off functionality, disabling of the STO feature is required for proper drive operation. A dedicated STO Disable Key connector is available for purchase and must be installed for applications where STO is not in use. Contact the factory for ordering information. Alternatively, STO may be disabled by installing the included mating connector for the STO connector, and wiring the designated pins together as given below in figure.

![STO Disable Connections Diagram](image)

STO Operation Test To maintain SIL 3, Cat 4 / PL e certification, the operation of the STO monitoring circuit (STO1 and STO2) must be verified at least once per month. The following procedure provides an example of a method to verify correct STO functionality. Note that it is the responsibility of the system operator to ensure all personal and machine safety requirements for the system are properly enforced during the proof test.

1. Power on the drive.
2. Verify the drive is in an Enabled state (by viewing the GREEN Status LED or by monitoring via a digital controller or network commands).
3. Remove the voltage signal from the STO1 input pin via a digital controller signal, network command, or by physically removing the STO Connector if safe to do so.
4. Verify that the drive is in a Disabled state (by viewing the Status LED is RED, or by verifying the STO OUT switch has closed).
5. Re-apply the voltage signal to the STO1 pin. Verify that the drive is once again in an Enabled state (by viewing the GREEN Status LED or by monitoring via a digital controller or network commands).
6. Repeat the above steps for the STO2 signal

Note: End-product certification may require a different interval test schedule or test requirements. It is the responsibility of the end-user to determine the required test interval and requirements for certifications other than stated above.
4.1.10 Communication and Commissioning

DPP drives include an Ethernet interface for POWERLINK, Modbus TCP or Ethernet networking and a USB interface for drive configuration and setup. A dual RJ-45 socket connector accepts standard CAT 5e or CAT 6 ethernet cables for the Ethernet network connections.

For drive commissioning, the DPP drive must be connected to a PC running ADVANCED Motion Controls DriveWare software. The mini type-b USB port on the DPP drive should be used with a STD-A to MINI-B USB cable for connection to a USB port on a PC.

Ethernet Node ID/Address DPP drives include two hexadecimal switches to assign the last octet of the IP address of the drive within the Ethernet network. Note that for POWERLINK, the IP address will always be 192.168.100.xxx. Figure 4.27 shows the hexadecimal switch settings and the corresponding node ID.

Network Communication LEDs Functionality The LINK/ACT LEDs on the dual RJ-45 communication connector provide network status. Figure 4.28 shows the LED locations, and Table 4.7 below describes typical LED functionality.
FIGURE 4.28 Network LED Locations

![Network LED Locations Diagram](image)

TABLE 4.7 Network Communication LEDs Function Protocol

<table>
<thead>
<tr>
<th>LED State</th>
<th>LINK/ACT LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green - On</td>
<td>Valid Link - No Activity</td>
<td></td>
</tr>
<tr>
<td>Green - Flickering</td>
<td>Valid Link - Network Activity</td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>Invalid Link</td>
<td></td>
</tr>
</tbody>
</table>
4.1.11 Commutation

Motor commutation is the process that maintains an optimal angle between the magnetic field created by the permanent magnets in the motor and the electromagnetic field created by the currents running through the motor windings. This process ensures optimal torque or force generation at any motor position. Single phase (brushed) motors accomplish this process with internal commutators built into the motor housing. Three phase (brushless) motors require a correctly configured drive to commutate properly, however.

See the DriveWare Software Guide for more information on AutoCommutation, Manual Commutation, and Phase Detect. DPP drives allow either sinusoidal or trapezoidal commutation.

Sinusoidal Commutation Sinusoidal commutation provides greater performance and efficiency than trapezoidal commutation. DPP drives can commutate sinusoidally when connected to a motor-mounted encoder. Sinusoidal Commutation works by supplying current to each of the three motor phases smoothly in a sinusoidal pattern. The flow of current through each phase is shifted by 120 degrees. The sum of the current flowing through all three phases adds up to zero. Figure 4.29 shows one electrical cycle of the motor phase currents.

![Sinusoidal Commutation Motor Phase Currents](image)

Trapezoidal Commutation Trapezoidal commutation is accomplished with the use of Hall Sensors on three phase (brushless) motors. DPP drives can commutate trapezoidally when used with properly spaced Hall Sensors. Unlike sinusoidal commutation, current flows through only two motor phases at a time with trapezoidal commutation. The Hall Sensors each generate a square wave with a certain phase difference (either 120- or 60-degrees) over one electrical cycle of the motor. This results in six distinct Hall states for each electrical cycle. Depending on the motor pole count, there may be more than one electrical cycle per motor revolution. The number of electrical cycles in one motor revolution is equal to the number of motor poles divided by 2. For example:

- a 6-pole motor contains 3 electrical cycles per motor revolution
- a 4-pole motor contains 2 electrical cycles per motor revolution
- a 2-pole motor contains 1 electrical cycle per motor revolution

The drive powers two of the three motor phases with DC current during each specific Hall Sensor state as shown in Figure 4.30.
Table 4.8 shows the default commutation states for 120-degree and 60-degree phasing. Depending on the specific setup, the sequences may change after running Auto Commutation.

TABLE 4.8 Digital Drive Commutation Sequence Table

<table>
<thead>
<tr>
<th></th>
<th>Hall 1</th>
<th>Hall 2</th>
<th>Hall 3</th>
<th>Hall 1</th>
<th>Hall 2</th>
<th>Hall 3</th>
<th>Motor Phase A</th>
<th>Motor Phase B</th>
<th>Motor Phase C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>LOW</td>
<td>HIGH</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>LOW</td>
<td>-</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>HIGH</td>
<td>LOW</td>
<td>-</td>
</tr>
<tr>
<td>Invalid</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.1.12 Homing

DPP drives can be configured in DriveWare to "home" to a certain reference signal. This reference signal can be any number of different signal types, such as limit switches, home switches, or encoder index pulses. See the DriveWare Software Guide for more information on Homing.

4.1.13 Firmware

DPP drives are shipped with the latest version of firmware already stored in the drive. Periodic firmware updates are posted on ADVANCED Motion Controls’ website, www.a-m-c.com. See the DriveWare Software Guide for information on how to check the drive’s firmware version, and how to download new firmware into the drive when necessary.
A.1 Specifications Tables

TABLE A.1 Specifications - AC Power Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>015S400</th>
<th>040A400</th>
<th>C060A400</th>
<th>C100A400</th>
<th>030A800</th>
<th>040A800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>VAC(VDC)</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>240 (339)</td>
<td>480 (678)</td>
<td>480 (678)</td>
</tr>
<tr>
<td>AC Supply Voltage Range</td>
<td>VAC</td>
<td>100-240</td>
<td>100-240</td>
<td>200-240</td>
<td>200-240</td>
<td>200-480</td>
<td>200-480</td>
</tr>
<tr>
<td>AC Supply Minimum</td>
<td>VAC</td>
<td>90</td>
<td>90</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>AC Supply Maximum</td>
<td>VAC</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>264</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>AC Input Phases</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AC Supply Frequency</td>
<td>Hz</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
<td>50-60</td>
</tr>
<tr>
<td>DC Bus Over Voltage Limit</td>
<td>VDC</td>
<td>384</td>
<td>384</td>
<td>420</td>
<td>420</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>DC Bus Under Voltage Limit</td>
<td>VDC</td>
<td>55</td>
<td>55</td>
<td>205</td>
<td>205</td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td>Maximum Peak Output Current</td>
<td>A (Arms)</td>
<td>15 (10.6)</td>
<td>40 (28.3)</td>
<td>60 (42.4)</td>
<td>100 (70.7)</td>
<td>30 (21.2)</td>
<td>60 (42.4)</td>
</tr>
<tr>
<td>Maximum Continuous Output Current</td>
<td>A (Arms)</td>
<td>7.5 (7.5)</td>
<td>20 (20)</td>
<td>30 (30)</td>
<td>50 (50)</td>
<td>15 (10.6)</td>
<td>30 (21.2)</td>
</tr>
<tr>
<td>Max. Continuous Output Power @ Rated Voltage¹</td>
<td>W</td>
<td>2415</td>
<td>6441</td>
<td>9662</td>
<td>16103</td>
<td>6830</td>
<td>13650</td>
</tr>
<tr>
<td>Max. Continuous Power Dissipation @ Rated Voltage</td>
<td>W</td>
<td>127</td>
<td>339</td>
<td>509</td>
<td>848</td>
<td>360</td>
<td>720</td>
</tr>
<tr>
<td>Internal Bus Capacitance</td>
<td>μF</td>
<td>540</td>
<td>660</td>
<td>1120</td>
<td>1120</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>PWM Switching Frequency</td>
<td>kHz</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>External Shunt Resistor Minimum Resistance</td>
<td>Ω</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>note 2</td>
<td>40</td>
</tr>
<tr>
<td>Minimum Load Inductance (Line-To-Line)</td>
<td>μH</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

1. P = (DC Rated Voltage) * (Cont. RMS Current) * 0.95
2. Contact factory before using an external shunt resistor with this power module

TABLE A.2 Power Specifications - DC Power Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>0208080</th>
<th>1008080</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply Voltage Range</td>
<td>VDC</td>
<td>20-80</td>
<td>20-80</td>
</tr>
<tr>
<td>DC Bus Over Voltage Limit</td>
<td>VDC</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>DC Bus Under Voltage Limit</td>
<td>VDC</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Maximum Peak Output Current</td>
<td>A (Arms)</td>
<td>20 (14.1)</td>
<td>100 (70.7)</td>
</tr>
<tr>
<td>Maximum Continuous Output Current</td>
<td>A (Arms)</td>
<td>10 (10)</td>
<td>60 (80)</td>
</tr>
<tr>
<td>Max. Continuous Output Power @ Rated Voltage¹</td>
<td>W</td>
<td>700</td>
<td>4500</td>
</tr>
<tr>
<td>Max. Continuous Power Dissipation @ Rated Voltage</td>
<td>W</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>Internal Bus Capacitance</td>
<td>μF</td>
<td>33</td>
<td>500</td>
</tr>
<tr>
<td>PWM Switching Frequency</td>
<td>kHz</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Minimum Load Inductance (Line-To-Line)</td>
<td>μH</td>
<td>600</td>
<td>250</td>
</tr>
</tbody>
</table>
TABLE A.3 Control Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>DPPANIU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Communication</td>
<td>POWERLINK / Modbus TCP / Ethernet (USB for Configuration)</td>
</tr>
<tr>
<td>Command Sources</td>
<td>±10V Analog, Over the Network, Encoder Following, Sequencing, Indexing, Jogging</td>
</tr>
<tr>
<td>Commutation Methods</td>
<td>Sinusoidal, Trapezoidal</td>
</tr>
<tr>
<td>Control Modes</td>
<td>Profile Modes, Cyclic Synchronous Modes, Current, Velocity, Position</td>
</tr>
<tr>
<td>Motors Supported</td>
<td>Three Phase (Brushless Servo), Single Phase (Brushed Servo, Voice Coil, Inductive Load), Stepper (2- or 3-Phase Closed Loop), AC Induction (Closed Loop Vector)</td>
</tr>
<tr>
<td>Hardware Protection</td>
<td>40+ Configurable Functions, Over Current, Over Temperature (Drive & Motor), Over Voltage, Short Circuit (Phase-Phase & Phase-Ground), Under Voltage</td>
</tr>
<tr>
<td>Programmable Digital I/O</td>
<td>11/7</td>
</tr>
<tr>
<td>Programmable Analog I/O</td>
<td>2/0</td>
</tr>
<tr>
<td>Primary I/O Logic Level</td>
<td>24 VDC</td>
</tr>
</tbody>
</table>

TABLE A.4 Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>90%, non-condensing</td>
</tr>
<tr>
<td>Mechanical Shock</td>
<td>15g, 11ms, Half-sine</td>
</tr>
<tr>
<td>Vibration</td>
<td>2 - 2000 Hz @ 2.5g</td>
</tr>
<tr>
<td>Altitude</td>
<td>0-3000m</td>
</tr>
<tr>
<td>Baseplate Maximum Allowable Temperature</td>
<td>0 - 75 °C</td>
</tr>
</tbody>
</table>

TABLE A.5 Feedback Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Feedback Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Incremental Encoder Input Frequency</td>
<td></td>
<td>20MHz (5 pre-quadrature)</td>
</tr>
<tr>
<td>Maximum Sin/Cos Encoder Input Frequency</td>
<td></td>
<td>200kHz</td>
</tr>
<tr>
<td>Maximum Hall Sensor Input Frequency</td>
<td></td>
<td>0.15 x PWM Switching Frequency</td>
</tr>
<tr>
<td>Maximum Tachometer Voltage</td>
<td></td>
<td>±10VDC</td>
</tr>
</tbody>
</table>

TABLE A.6 24 VDC Digital I/O Specifications

Logical LOW	0-1V
Logical HIGH	15-30V (24V Nominal)
Maximum Current	7mA @ 24V

Logical LOW	15-30V (24V nominal, supplied by user)
Logical HIGH	Same as Output Pull-Up Voltage
Maximum Current	50mA sinking, 8mA sourcing
This section discusses how to ensure optimum performance and, if necessary, get assistance from the factory.

B.1 Fault Conditions and Symptoms

A fault condition can either be caused by a system parameter in excess of software or hardware limits, or by an event that has been user-configured to disable the drive upon occurrence.

To determine whether the drive is in a fault state, use the Drive Status function in DriveWare to view active and history event items and drive fault conditions. See the DriveWare Software Guide for more information on reading the Drive Status window. Some common fault conditions caused by hardware issues are listed below.

Over-Temperature Verify that the baseplate temperature is less than the drive Baseplate Temperature value. The drive remains disabled until the temperature at the drive baseplate falls below this threshold. See "Ambient Temperature Range and Thermal Data" on page 17 or consult the drive datasheet for the allowable temperature range.

Over-Voltage Shutdown

1. Check the DC power supply voltage for a value above the drive over-voltage shutdown limit. If the DC bus voltage is above this limit, check the AC power line connected to the DC power supply for proper value.
2. Check the regenerative energy absorbed during deceleration. This is done by monitoring the DC bus voltage with a voltmeter or oscilloscope. If the DC bus voltage increases above the drive over-voltage shutdown limit during deceleration or regeneration, a shunt regulator may be necessary. See “Power Supply Specifications” on page 16 for more information.

Under-Voltage Shutdown Verify power supply voltage for minimum conditions per specifications. Also note that the drive will pull the power supply voltage down if the power supply cannot provide the required current for the drive. This could occur when high current is demanded and the power supply is pulled below the minimum operating voltage required by the drive.
Short Circuit Fault

1. Check each motor lead for shorts with respect to motor housing, power ground, and also phase-to-phase. If the motor is shorted it will not rotate freely when no power is applied while it is uncoupled from the load.
2. Disconnect the motor leads to see if the drive will enable without the motor connected.
3. Measure motor armature resistance between motor leads with the drive disconnected.

Invalid Hall Sensor State

See the “Commutation Sequence” table in “Commutation” on page 48 for valid commutation states. If the drive is disabled check the following:
1. Check the voltage levels for all the Hall sensor inputs.
2. Make sure all Hall Sensor lines are connected properly.

B.1.1 Software Limits

Because DriveWare allows user configuration of many system parameters such as current, velocity, and position limits, as well as an associated "event action" for DriveWare to take when the system reaches this limit, it is possible for a drive to appear to be inoperative when in actuality it is simply in an assigned disable state.

For example, the motor velocity can be limited by giving a value to the Motor Over Speed selection in DriveWare. An "event action", such as "Disable the Power Bridge", can also be assigned for this particular limiting event for DriveWare to take if the motor reaches this speed. If the motor does happen to reach this velocity limit, DriveWare will automatically cut power to the drive's output in this particular case, and the drive will be disabled. In the Drive Status window, "Motor Over Speed" will be shown as a "history" event, and "Commanded Disable" will be shown as an "Action" event.

Depending on each specific system and application, there are many different options available for assigning system limits and associated actions. See the DriveWare Software Guide for more information.

B.1.2 Connection Problems

Connection problems are oftentimes caused by incorrect communication settings in DriveWare. Check all communications settings to be sure that the settings assigned in DriveWare are correct.

Faulty connection cables are also a possible cause of connection problems. Check all cables for any shorts or intermittent connections. Also check that all port hardware is properly installed and configured.

B.1.3 Overload

Verify that the minimum inductance requirement is met. If the inductance is too low it could appear like a short circuit to the drive and thus it might cause the short circuit fault to trip. Excessive heating of the drive and motor is also characteristic of the minimum inductance requirement not being met. See drive datasheets for minimum inductance requirements.
B.1.4 Current Limiting

All drives incorporate a “fold-back” circuit for protection against over-current. This “fold-back” circuit uses an approximate “I^2t” algorithm to protect the drive. All drives can run at peak current for a maximum of 2 seconds (each direction). Currents below this peak current but above the continuous current can be sustained for a longer time period, and the drive will automatically fold back at an approximate rate of “I^2t” to the continuous current limit within a time frame of less than 10 seconds. An over-current condition will not cause the drive to become disabled unless configured to do so in DriveWare.

![FIGURE B.1 Peak Current Fold-Back](image)

B.1.5 Motor Problems

A motor run-away condition is when the motor spins rapidly with no control from the command input. The most likely cause of this error comes from having the feedback element connected for positive feedback. This can be solved by changing the order that the feedback element lines are connected to the drive, or by using DriveWare to reverse the internal velocity feedback polarity setting.

Another common motor issue is when the motor spins faster in one direction than in the other. This is typically caused by improper motor commutation or poor loop tuning. Follow the steps in the DriveWare Software Guide to properly commutate and tune the motor.

B.1.6 Causes of Erratic Operation

- Improper grounding (i.e., drive signal ground is not connected to source signal ground).
- Noisy command signal. Check for system ground loops.
- Mechanical backlash, dead-band, slippage, etc.
- Excessive voltage spikes on bus.
B.2 Technical Support

For help from the manufacturer regarding drive set-up or operating problems, please gather the following information:

B.2.1 Drive Model Information

- DC bus voltage and range.
- Motor type, including inductance, torque constant, and winding resistance.
- Length and make-up of all wiring and cables.
- If brushless, include Hall sensor information.
- Type of controller, plus full description of feedback devices.
- Description of problem: instability, run-away, noise, over/under shoot, etc.
- Complete part number and serial number of the product. Original purchase order is helpful, but not necessary.

B.2.2 Product Label Description

The following is a typical example of a product label as it is found on the drive:

1. **Model Number:** This is the main product identifier. The model number can have a suffix designating a change from the base model.
2. **Revision Letter:** Product revision level letter ('A' is the earliest release from any model).
3. **Version:** The version number is used to track minor product upgrades with the same model number and revision letter ('01' is the earliest release of any revision).
4. **Proto Designation:** When included, indicates that the model is a prototype unit and model number will also begin with an 'X' designator.
5. **Serial Number:** The serial number consists of a 5-digit lot number followed by a 4-digit sequence number. Each product is assigned a unique serial number to track product life cycle history.
6. **Date Code:** The date code is a 4-digit number signifying the year and week of manufacture. The first two digits designate the year and the second two digits designate the week (e.g. the drive label shown would have been built in the year 2011 during the 18th week).
7. **Input and Output Power Data:** Includes basic power parameters of the product.
8. **General Information:** Displays applicable agency approvals, UL file reference number, compliance approvals, and EtherCAT capability. More complete product information is available by following the listed website.
B.2.3 Warranty Returns and Factory Help

Seller warrants that all items will be delivered free from defects in material and workmanship and in conformance with contractual requirements. The Seller makes no other warranties, express or implied and specifically NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The Seller’s exclusive liability for breach of warranty shall be limited to repairing or replacing at the Seller’s option items returned to Seller’s plant at Buyer’s expense within one year of the date of delivery. The Seller’s liability on any claim of any kind, including negligence, for loss or damage arising out of, connected with or resulting from this order, or from the performance or breach thereof or from the manufacture, sale, delivery, resale, repair or use of any item or services covered by or furnished under this order shall in no case exceed the price allocable to the item or service or part thereof which gives rise to the claim and in the event Seller fails to manufacture or deliver items other than standard products that appear in Seller’s catalog, Seller’s exclusive liability and Buyer’s exclusive remedy shall be release of the Buyer from the obligation to pay the purchase price. IN NO EVENT SHALL THE SELLER BE LIABLE FOR SPECIAL OR CONSEQUENTIAL DAMAGES.

Buyer will take all appropriate measures to advise users and operators of the products delivered hereunder of all potential dangers to persons or property, which may be occasioned by such use. Buyer will indemnify and hold Seller harmless from all claims of any kind for injuries to persons and property arising from use of the products delivered hereunder. Buyer will, at its sole cost, carry liability insurance adequate to protect Buyer and Seller against such claims.

All returns (warranty or non-warranty) require that you first obtain a Return Material Authorization (RMA) number from the factory.

Request an RMA number by:

<table>
<thead>
<tr>
<th>Method</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>web</td>
<td>www.a-m-c.com/download/form/form_rma.html</td>
</tr>
<tr>
<td>telephone</td>
<td>(805) 389-1935</td>
</tr>
<tr>
<td>fax</td>
<td>(805) 389-1165</td>
</tr>
</tbody>
</table>
Index

Numerics
10 V Analog Input 14
10 VDC Position Feedback 13
1Vp-p Sin/Cos Encoder 13, 37
24VDC Digital I/O 33

A
Absolute Encoder 12
Absolute Sin/Cos Encoder 37
Agency Compliances ii
Altitude 51
Auxiliary Encoder 14
Auxiliary Incremental Encoder 13

B
Baseplate Temperature Range 17
Block Diagrams 7

C
 Capacitive Interference 23
Central Point Grounding 22
Command Sources 14
10V Analog 14
Encoder Following 14
Indexing and Sequencing 14
Jogging 14
Over the Network 14
Communication Protocol 8
Communication Settings 53
Commutation 48–49
Sinusoidal 48
Trapezoidal 48
Commutation Sequence Table 49
Company Website 11
Connection Problems 55
Control Modes 9–10
Current 10
Cyclic Synch Modes 9
Hall Velocity 10
Position 10
Profile Modes 9
Velocity 10
Control Module 7
Crimp Tool 25
Current (Torque) Mode 10
Current Limiting 54
Cyclic Synch. Current Mode 10
Cyclic Synch. Position Mode 10
Cyclic Synch. Velocity Mode 10

D
Differential Inputs 23
Digital I/O 23
24VDC Digital I/O 33
Digital I/O Specifications 51
Drive Datasheet 4, 15
DriveWare 4, 31
Dwell Time 15

E
Electromagnetic Interference 23
Encoder 11
Encoder Following 14
Encoder Index 38
Encoder Index Pulses 49
Environment 17
Shock/Vibration 17
Ext. Shunt Resistor Connections .. 43
External Filter Card 16, 23

F
Fault Conditions 52–54
Invalid Hall Commutation 53
Over-Temperature 52
Over-Voltage Shutdown 52
Short Circuit Fault 53
Under-Voltage Shutdown 52
Feedback Operation 37
Feedback Polarity 11
Feedback Specifications 51
Feedback Supported 11–13
10 VDC Position 13
1Vp-p Sin/Cos Encoder 13
Absolute Encoder 12
Aux. Incremental Encoder 13
Hall Sensors 13
Incremental Encoder 11
Tachometer 13
Feedback Wires 24
Ferrite Suppression Cores 21
Firmware 49
Fold-back 54

G
Gearing Ratio 14
Ground Loops 22, 24
Grounding 22
Controller Chassis 22
DPC Drive Chassis 22
Drive Case 22
Motor Chassis 22
Power Supply Chassis 22
Shielding 22

H
Hall Sensor Input Frequency .. 51
Hall Sensor Inputs 13
Hall Sensors 38
Hall Velocity 10
Home Switches 49
Homing 49
Humidity 17, 51

I
I/O and Signal Wires 25
Impedance 23
Incremental Encoder 11, 38
Indexing and Sequencing 14
Inductive Filter Cards 21
Input/Output Pin Functions 33–36
Analog I/O 36
Auxiliary Encoder 36
Digital I/O 33
Interference Coupling 23
Invalid Hall Commutation 53

J
Jogging 14

L
LED Functions 41
Limit Switches 49
Lock-out/tag-out Procedures ... 1
Logic Power Supply 39

M
Magnetic Interference 23
Mechanical Shock 23
Model Information 51
Model Mask 5

ADVANCED
MOTION
CONTROLS

MNDGDPIN-06